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A Soffer-Cottey model for the galvanomagnetic 
properties of thin polycrystalline metal films 
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Theoretical equations for the galvanomagnetic parameters of thin polycrystalline metal films 
are derived within the frameworks of the Soffer-Cottey model for electron scattering at rough 
surfaces and of the three-dimensional model for electron scattering at grain boundaries. 
Influences of the surface roughness and of the strength of the transverse magnetic field are 

investigated, showing the absence of oscillations in the transport parameter s with increasing 
magnetic field even for very thin films with rough surfaces. In the limits of small reduced 
thicknesses and weak magnetic fields, analytical expressions for the Hall coefficient and for 

the electrical conductivity are proposed in order to provide an easier experimental 
determination of the roughness and grain parameters. 

1. I n t r o d u c t i o n  
In the past few years, interest in the theoretical study 
of variations in the Hall coefficient or in the magneto- 
resistance of thin metal films with the film thickness 
has been revived [1-5]. Let us recall that in the 
classical Fuchs-Sondheimer model (FS model) [6, 7] 
for the size effects in thin films, a constant specularity 
parameter p was introduced to describe the scattering 
of carriers at the external surfaces. Then, recently 
some theoretical work [-3, 8, 9] was devoted to more 
or less sophisticated extensions of the FS model. These 
extensions, which deal with the influence of the angle, 
0, of the incident �9 wave vector and of r.m.s, height of 
the roughness, r, at film surfaces are based on the 
Softer model [ 10] of an angularly-dependent specular- 
ity. Among these studies, Preist and Sambles [3] 
extended the FS model and observed oscillations in 
electrical conductivity as a function of the magnetic 
field in the case of films submitted to an electric field 
E(Ex, Ey, 0) and a transverse magnetic field H(0, 0, H). 
However, Tellier [4, 5] combined the Cottey formal- 
ism [11] and the Softer model to express the total 
relaxation time associated with the simultaneous 
background and external surface scattering, and ob- 
tained a monotonic increase in the film conductivity 
with the magnetic field strength, even for very strong 
magnetic fields. But the oscillations in the film con- 
ductivity sometimes observed in experiments [11, 12] 
have also been interpreted in terms of deviations from 
the free electron model [13, 14] and attributed to 
quantified momentum orbitals. However, the problem 
up to now has not been completely elucidated and 
there is no reason to make the Cottey formalism more 
questionable than the FS formalism. 

Moreover, a great deal of experimental work 
[15 25] on the morphology of as-deposited as well as 
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of thermally-annealed thin metal films has given evid- 
ence for films having high defect densities. Point de- 
fects and dislocations are currently observed [-15, 22, 
26, 27] but in addition films are frequently found to be 
grained [15-25]. Grained films can exhibit a columnar 
structure; however, examination of the morphology of 
films by scanning electron microscopy, transmission 
electron microscopy and X-ray diffractometry, also 
reveals fine-grained structures [15-21]. Thus the con- 
tribution o f  the grain boundary scattering to size 
effects in the transport parameters needs also to be 
taken into account when attempting to interpret data 
on the galvanomagnetic properties of films in terms 
of an angularly dependent surface scattering. Here it 
must be pointed out that except for the theoretical 
work recently carried out by Warkusz [9], which is 
essentially concerned with thermal effects in poly- 
crystalline films and in which some partial results on 
the influence of the surface roughness are derived at 
the light of the FS model, there are to our knowledge 
no complete theoretical studies devoted to the surface 
roughness dependence of the galvanomagnetic prop- 
erties of polycrystalline films. 

Thus the purpose of this paper is to use the Cottey 
formalism to derive the formulations for the galvano- 
magnetic properties of thin polycrystalline metal films, 
which include the contribution of the r.m.s, surface 
roughness and of the angle of incidence to the total 
relaxation time of the carriers. The influence of the 
surface roughness parameter on the magnetores- 
istance and on the Hall coefficient is systematically 
investigated. Emphasis is placed on the magnetic field 
dependence of the galvanomagnetic properties. Some 
attempts are made to extract the contribution 
of the grain-boundary scattering to the total size 
effect. 
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2. Theoretical t reatment 
2.1. Expressing the distribution function 

of carriers 
In the case of polycrystalline films we have to take into 
account three different scattering processes going On 
at the same time: 

1. The background scattering, which is described by 
a relaxation time %. The background relaxation time 
includes the elastic scattering of carriers by point 
defects, and for a sake of simplicity it is supposed to be 
independent of the film thickness, d. 

2. The carrier scatterin9 at the external surface, for 
which a relaxation time zs can be defined. In a com- 
bined SC model the relaxation time % is given by 
[4, 28] 

[ 1-1 zs -- d VF'ln COS0 (1) 

where VF is the velocity of carriers at the Fermi surface. 
The specularity parameter p is that calculated by 
Softer [10] in the framework of classical models for 
electromagnetic waves scattering at rough surfaces 
[,29]. 

)21 p = exp - \ X c  cos0 (2) 

where X c is the Fermi wavelength of conduction elec- 
trons. Equation 1 can be rewritten in the form 

z, = zoAc~176 (3) 

involving the size parameter A, given by 

A = k - l (4nr /Xc)  2 (4) 

k being the reduced thickness, i.e. the ratio of the film 
thickness, d, to the background mean free path, Xo. 

3. The carrier scatterin9 at 9rain boundaries, where 
we choose for the relaxation time zg the expression 
derived several years ago by Tellier and Tosser [,1, 30] 
who assumed that the grain boundaries can be re- 
presented by three arrays of planar boundaries with 
rough surfaces respectively perpendicular to the x, y 
and z axes and that from a statistical point of view 
only a fraction t of the carriers are specularly transmit- 
ted through any potential associated with the grain 
boundaries. To avoid having to deal with a multitude 
of unknown parameters it is usual [,1] to assume 
crudely that for fine-grained films the grains are cubic. 
In these conditions the relaxation time Zg related to 
the simultaneous background and grain-boundary 
scattering processes is given by [-30] 

Tg = '170[-1 "]- C2V -1  + (1 -- C)V -1  IcosOI] -~ 
(5) 

with C = 4/n. 

In the special case of cubic grains, the grain para- 
meter v is related to the average grain diameter D by 
means of the formula 

v = D ~,0 1 [ I n ( i / t ) ]  -1  (6) 

If the scattering events occur independently of each 
other, then Matthiessen's rule is fulfilled and we find 

1 4 2 2  

the equation for the total relaxation time, r(0), as 

z(O) = % [ ~ ( 0 ) ]  -~ (7) 

where the angularly dependent function ~(0)  is given 
by 

~-(0)  = 1 "~ v - 1 C  2 + (1 - C)v -1 ]cosO[ 

+ A [cos O[ cos 20 (8) 

We now proceed to calculate the distribution function 
f = f o  + f l  for a geometry related to a metal film 
placed in an electric field E(Ex,Ev,O) and a transverse 
magnetic field H(0, 0, H). The deviation f l  from the 
equilibrium function fo caused by the external elec- 
trical and magnetic fields is the solution of the 
equation [,1, 31] 

x(O) m Vy ~xVx - V~ ~v, / 

e f E ~fO ~fo~ 
- m \ ~v x + Ey ~vy ) (9) 

where v~ and vr are components of the free electron 
velocity r (absolute value v). e is the absolute charge of 
an electron and m is the effective electron mass, 

For the purpose of determining the solution of 
Equation 9 we follow a treatment previously proposed 
by Sondheimer [7]. Let us represent f~ by means of 
two functions C 1 and C2 which do no t  depend ex- 
plicitly on vx and %: 

x~f  0 
f l  __ (vxC 1 + VrC2 ) (10) 

V 

Then let us define the complex quantities 

9 = C 1 - j C 2  (lla) 

F = E~ - jEy (llb) 

in such a way that the substitution of Equation 10 into 
Equation 11 yields a pair of simultaneous equations 
which with the use of Equations 11 can be rewritten as 
a compact equation 

g[z(0)] -1 + j g v r B  1 = e(mv)- l  F (12) 

where rB is the radius of the Larmor orbit of an 
electron moving in a magnetic field of magnitude H: 

rB = my(e l l )  -1 (13) 

We readily find the solution of Equation 12 

~- e (E x _ jEy) T,O 1 ~ ( 0 )  -- J~B ] / 9 my 

Here for convenience we use ~ to denote the field 
parameter 

o~ = Xolr n (15) 

By turning to Equation l l a  we finally get the equa- 
tions for the functions C1 and C2 as 

C1 - e% ( ~ ( O ) E x  - QtEy'] (16) 
mv \ ~ 2  ~- ~ - ) 



C2 _ ez o (~(O)E,  + otE~'~ 
my \ [ ~ ( 0 ) ]  2 + ~ 2 ]  (17) 

2.2. Expressing the galvanomagnetic 
parameters of polycrystalline films 

We have now to calculate the current density (J~, Jr ,  
0). This requires the evaluation of integrals of the form 
[1, 7] 

( h ) 3 f f f  ~f~ (18) Jx = - 2e C lv~ ~ v  v 

Jr = - 2e C2v2 ~-v d3v (19) 

For this purpose, as a first step we introduce spherical 
coordinates in v-space with v~ = v cos0. After carrying 
the integrations over the variables v and q~, Equations 
18 and 19 become 

3 
Jx = ~ o o ( E J l  - ~ErI2) (20) 

3 
Jr = ~(Io(Eyll - ~Exl2) 

where 11 and 12 denote integrals over the variable 0: 

f ]  sin 3 0~ (0 )  
11 = [~(0)]2 + ~2] dO (22) 

f [  sin 30 
Iz = [if(O)] 2 + ct 2 dO (23) 

and (Io is the background conductivity. 
If in a second step we transform the integration 

variable from 0 to u = cos O, the alternative expression 
for the current density is found to be given by 

3 
J~ = ~ ( Io(E~r  - aEy~) (24) 

3 
Jr = ~(Io(Ey ~r + ExM) 

with 

Setting Jy = 0 in Equation 25 and eliminating the 
components Ex and Ey of the electric field in Equa- 
tions 28 and 30, we get 

~f - ~, d 2  + a2~2  (3!) 

RHf 2 (  M ) 
RH0 - -  3 [~,2 + ~ 2 ~ 2  (32) 

Equation 32 is obtained by taking into account the 
fact that for bulk metals the Hall coefficient is related 
to the number n of free electrons by 

Rno = - 1/ne (33) 

The film magnetoresistance is easily found to be 

Mf = s C 0 M ( a  '2 + czz~z) -1 - 1 (34) 

where d o  denotes the reduced form of the integral d 
obtained by setting cz = 0. 

3. Discussion and conclusion 
3.1. Presentation of theoretical results 

(21) Theoretical values of the galvanomagnetic parameters 
have been evaluated using standard computational 
techniques. In order to give a rapid overview of the 
influence of the surface roughness on the transport 
parameters, results of such computations are shown in 
Fig. la, b and c for a moderate contribution to the 
resistivity by grain boundaries (v = 1). On these fig- 
ures we have also displayed when appropriate the 
curves corresponding to a constant value of 0.5 for the 
specularity parameter p as drawn from the three- 
dimensional model of grain boundaries [32, 33]. It 
appears reasonable to assume that the main contri- 
bution to the current is due to electrons impinging on 
external surfaces at 0 = n/2; then, turning to the ex- 
pression for p (Equation 2) in the combined 
Soffer-Cottey (SC) and three-dimensional (TD) model 

(25) (SC-TD model), we readily find that the correspond- 
ing value for the reduced roughness is close to 0.1. At 

~r = I 1 r 1 + C 2 v  -1 + (1 - C ) v - l u  -~- A u 3 ] ( 1  - U2)d u 
[1 + C2V -1 ~ (1 -- ~ - - F u  + ~4~-] ~ + ~2 J o  

I~ 1 -- u 2 
= [1 + C2v -1 + (1 ~ C ) v - l u  + Au3] 2 + (Z 2du 

To express the galvanomagnetic parameters for the 
geometry under consideration we start from the theor- 
etical formulae for the film conductivity:  

(If --  Ex J.v =0 

for the magnetoresistance Mf: 

Aor 0f(H) - pf(0) 
Mf - - (29) 

Pf, o 9f(O) 

and for the Hall coefficient: 

Ey 

(26) 

(27) 

first sight the curves resulting solely from three-dimen- 
sional type calculations [32, 33] are in close agree- 
ment with the present curves. But after a precise 
examination it is clear that there are several inter- 
esting differences: 

(i) Comparing the predictions of the TD model 
with those of the SC-TD model it appears that the 
effect of the angular dependence of p is to decrease 
the overall size effect in the conductivity. A similar 
behaviour for the film conductivity was previously 
reported by Tellier [28], neglecting the grain bound- 
ary scattering process. 
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(ii) In the absence of a contribution of grain bound- 
aries to the transport properties the SC model also 
gives a decrease in the overall size effect in the Hall 
coefficient [5]. Moreover, for k lying in the range 0.01 
to 10 the Hall coefficient as evaluated in the frame- 
work of the TD model [34-] always remains higher 
than the Hall coefficient as given by the SC theory [5]. 
Here again the SC-TD model gives an overall size 
effect which is apparently less than in the TD theory 
(Fig. lb). However, the TD and SC-TD curves cross 
each other for values of k in the vicinity of 0.07. Then 
at higher k values we can strongly conclude that the 
effect of the angular and roughness dependence of p 
is to decrease the apparent influence of the electron 
scattering process at external surfaces. 

However, although the TD and SC-TD models 
exhibit some differences the SC-TD model satisfies 
some essential physical requirements whatever the 
strength of magnetic field: 

(i) From Table I, which incorporates the influence 
of the magnetic field strength on the galvanomagnetic 
parameter through the parameter ~, we observe that 

1 424 

Figure 1 The  influence of the surface roughness  on the var ious  
t r anspor t  pa ramete r s  of a polycrystal l ine metal  film with v = 1. 
(a) ~f/Oo aga ins t  k for ct = 1. Curves  a, b, c, d, e and  f are for r/Xc 
= 0.01, 0.04, 0.1, 0.4, 1 and  4 respectively. Curve  g is the Cot tey  

curve for p = 0.5. (b) Rnf/Reo agains t  k for ct = 1. Curves  b, c, d, e 
and  fa re  for r/Xc = 0.04, 0.1, 0.4, 1 and  4. Curve  g is the Cot tey  curve 
for p = 0.5. 

progressively transforming a smooth surface to a 
rough surface causes a monotonic increase in Rnf/RHo 
and a monotonic decrease in ~f/cy o. Such a behaviour 
has been previously depicted by Tellier [4, 5] in the 
limit of weak and strong magnetic fields when devel- 
oping the SC model. 

(ii) As expected, the size effect in galvanomagnetic 
parameters vanishes for large reduced thickness. Here 
the predicted behaviour agrees with all the conduction 
models such as the Sondheimer model, the SC model 
and so on. 

The influence of the electron scattering at grain 
boundaries on the transport parameter may be seen 
through Table II. We observe that as the grain bound- 
aries act as more and more efficient scatterers (i.e. for 
decreasing v), all the galvanomagnetic parameters, 
M f ,  cyf/(y o and RHf/RHo take smaller and smaller 
values. In particular, one may see that the grain- 
boundary scattering process partially alters the influ- 
ence of the surface roughness on the transverse 
magnetoresistance and on the Hall coefficient. One 
cannot then reasonably expect to observe experi- 
mentally a measurable magnetoresistance effect in 
fine-grained films (v < 0.4), even for very thin films 
(k~< 0.01). We note that as the grain-boundary 
scattering becomes less and less efficient the values for 
the galvanomagnefic parameters tend to the SC-type 
values. 

Now we concentrate our attention on the theoret- 
ical variations in the galvanomagnetic parameters 
with the field parameter 13 = kcc At this point let us 
recall that some authors [3] developing calculations 
in the framework of the FS model obtained oscil- 
lations in the conductivity ratio for [3 > 1 with a first 



TABLE I The galvanomagnetic parameters for various values of the surface roughness parameter, r/)~c and the field strength assuming 
k = 0.01 and moderately efficient scattering at grain boundaries (v = 0.4) 

= 0.9 

r/%c 0.01 0.04 0.1 0.4 
Mf 2.4 • 10 -s 0.00026 0.00250 0.0033 
%/c~ o 0.200409 0.15099 0.09953 0.04381 
Rnf/RIt o 1.00079 1.11042 1.48795 3.09547 

~t=9 

r/~,c 0.01 0.04 0.1 0.4 
Mf 0.06500 0.06853 0.15201 0.20716 
~f/cr 0 0.20028 0.14135 0.08661 0.03641 
Rnf/Rno 1.00021 1.06477 1.03701 2.76388 

= 90 

r/)~c 0.01 0.04 0.1 0.4 
Mf 0.00088 0.19585 0.06810 2.23558 
cre/~ o 0.20024 0.12630 0.04245 0.013584 
RHf/Rno 1.00000 1.00227 1.05778 1.06954 

TABLE II The galvanomagnetic parameters for various values of the grain parameter v and the field strength, assuming k = 0.01 and 
moderately rough surfaces (r/Lo = 0.04) 

= 0.9 

V 0.2 0.4 0.8 2 4 
Mf 0.00027 0.00131 0.00465 0.01495 0.02562 
c~f/cr o 0.09260 O. 15084 0.22623 0.33245 0.39786 
Rnf/RHo 1.05593 1.10963 1.17784 1.26631 1.31576 

:~=9 

v 0.2 0.4 0.8 2 4 
Mf 0.01945 0.06853 0.16376 0.33561 0.45811 
cyf/cy o 0.09086 0.141352 0.19530 0.25264 0.27985 
Rnf/Rno 1.04204 1.06477 1.08103 1.09255 1.09667 

= 90 

v 0.2 0.4 0.8 2 4 
Mf 0.08464 0.19585 0.36868 0.64828 0.83862 
%/~0 0.08540 0.12630 0.16606 0.20471 0.22193 
RHf/RHo 1.00209 1.00227 1.00237 1.00242 1.00244 

min imum in cf/c~ o occurr ing for [3 close to unity. The 
relative magni tudes  of  the oscillations in conduct ivi ty  
are much  more  for rough  surfaces than for smooth  
surfaces. The oscillations tend to disappear  for small 
r/Xr (r/Xr < 0.04). Increasing the reduced thickness 

from k = 0.01 to k = 0.5 causes a marked decrease in the 
oscillations. Moreover ,  variations in RHf/RHo with [3 
also show oscillations at high [3 ([3 > 1) centred about  
RHf/RHo = 1 [3]. 

Going  back to the present model,  Fig. 2 illustrates 
the Hall coefficient result for v - - 1 .  It  should be 
pointed out  that  the galvanomagnet ic  parameter ,  
which is less sensitive to the g ra in -boundary  scattering 
process, is just the Hall coefficient. Thus a general 
conclusion for the Hall coefficient behaviour  can eas- 
ily be drawn from the results displayed in Fig. 2. In  the 
present model  we never observe oscillations in the 
Hall coefficient, even for very thin films with rough  
surfaces (r/Xo > 1). In  this limit of s trong magnet ic  

fields we can consider Fig. 3 as representative of  the 
general behaviour  for the variations in the conductiv-  
ity ratio ~f/~o with the field parameter  [3. F r o m  Fig. 3 
we infer that  even for very thin films (k < 0.01) the 
conduct ivi ty  ratio decreases monotonica l ly  to give a 
plateau for a limiting value [3e of the field parameter.  
Increasing the film thickness (k = 0.1) results in a shift 
of the plateau which moves toward  the higher field 
parameter  region. Clearly the S C - T D  model  yields no 
oscillatory pat tern in the polycrystalline film conduct-  
ivity as a function of increasing magnet ic  field. As the 
field parameter  region investigated here corresponds 
to that  studied by Preist and Sambles [3], we disagree 
with these authors  about  the predict ion of a decaying 
oscillating behaviour  in the field dependence of the 
conductivity.  Moreover ,  if we look at plots of  the 
transverse magnetoresis tance Mf against the field 
parameter  [3, for different values of  the film thickness 
(Fig. 4) we also observe the absence of an oscillatory 
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Figure 2 The field parameter, [3, variation of the Hall coefficient 
ratio, Rnf/Rno , for thin polycrystalline films with v = 1. Curves A, 
B, C and D are for k = 0.01 and for r/kc = 2, 1, 0.2 and 0.1, 
respectively. Curves a, b and c are for k = 0.1 and for r/ko = 1,075 
and 0.4, respectively. 
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Figure 4 The field parameter, [3, variation of the magnetoresistance 
Mf for thin polycrystalline films with v = 1. Curves A and B are for 
k = 0.01 and for r/~ = 0.2 and 0.1, respectively. Curves d and ~t 
are for k = 0.001 and for r/~r = 0.06 and 0.04, respectively. 
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Figure 3 The field parameter, 13, variation of the conductivity ratio, 
~/~0 for thin polycrystalline films with v = 1. Curves A, B, C are 
for k = 0.01 and for r/ko = 0.2, 0.1 and 0.075, respectively. Curves 
a, b, c are for k = 0.1 and for r/k~ = 1, 0.75 and 0.4, respectively. 

pattern. Effectively the transverse magnetoresis tance 
shows a steady increase with increasing field strength, 
followed in the s trong field region by a quasi-inde- 
pendence of  the field parameter  13. 

3.2. Analytical expressions for the 
galvanomagnetic parameters 

Using Equat ions  31, 32 and 34, which do not  express 
analytically the galvanomagnet ic  parameters,  to de- 
termine experimental values for the reduced rough-  
ness r/Xc and the grain parameter  v leads to practical 
difficulties in detecting easily the exact contr ibut ion of  
r/X~ and v to the galvanomagnet ic  properties. Direct 
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measurements  of  r /k  c and v require effectively a sep- 
arat ion of  the contr ibut ions to the galvanomagnet ic  
properties of  the surface roughness, of the film thick- 
ness and of the grain parameter.  Owing to the fact that  
the Hall coefficient exhibits large size effects exclus- 
ively when we are concerned with very thin films 
(k < 0 . 1 )  with rough  surfaces (r/kc > 0.06), it seems 
interesting to concentrate  our  at tention on measure- 
ments made on thin films at low temperatures for 
which the size effects in RHf and M r are not  usually too  
limited in magnitude.  Moreover ,  only weak magnetic 
fields are easily available in experiments. The purpose 
of  this section is therefore to derive simple equations 
for the Hall coefficient a n d  the conductivi ty in the 
limiting cases of  small reduced thickness and weak 
magnetic  field, in order  to perform an easy determina- 
tion of  the roughness parameter  f rom experimental 
data. 

Useful information about  the nature of  the depend- 
ence of  the Hall  coefficient on  the reduced thickness 
can be obtained from Fig. 5, which represents plots of  
ln(Rnf/RHo ) against Ink, with r / ) ~  and v acting as 
parameters.  We obtain  straight lines with a slope of 
about  - 1/6. Repeating this procedure for plots of the 
variations of In (RHf/RHo) against ln(r/X~) (insert to 
Fig. 5) and against In v (Fig. 6) also gives linear 
variations from which we can deduce values of  about  
2/3 and 2/11 for the respective slopes. The effect of  the 
external surfaces and gra in-boundary  scatterings on 
the Hall coefficient ratio is then easily estimated to be 
of  the form 

In(Rill/gila ) ,,~ 2 1 n ( r / ~ )  -- ~ l n k  + ~ l n v  + ~a  

~ 1, k ~ 1 (35) 

Cg R is a constant  which one can adjust to minimize in 
the large v and r/X~ ranges any discrepancies between 
the exact and approximate  values of the Hall coeffi- 
cient ratio. Table I I I  provides further information 
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Figure 5 Plo ts  ofln(Rne/R,o) aga ins t  I n k  wi th  v and  r/Xo ac t ing  as 

parameters .  Curves  A, B, C, D are for v = 1 and  r/~o = 1; v = 1 and  

r/X~ = 0.4; v = 4 and  r/Xc = 1; v = 0.4 and  r/Xc = 1, respectively.  In  

the inset  are shown  plots  of ln(Rne/Rno) aga ins t  ln(r/Xo) for 
k = 0.001. Curves  A, B, C are for v = 10, 2 and  0.6, respectively.  
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Figure 6 Plo ts  of ln(Rnf/Rno ) aga ins t  l n v .  Curves  a, b, c are for 
k = 0.0001 and  for r/X~ = 1, 0.4 and  0.1, respectively.  Curves  A, B, C 

are for k = 0.001 and  for r/X c = 1, 0.4 and  0.1, respectively.  

about the ranges of applicability of the approximate 
equation [35]. We observe that the approximate form 
of Rnf/R.o accurately represents the exact form down 
to k ~ 0.01 until the grain parameter lies in the 
range 0.6 to 6. Increasing the reduced roughness 
results in an extension of the k range of applicability of 
the approximate equation. As an example, for v = 0.6 
the deviation between the exact and approximate 
values of Rnf/Rno as given by Equations 32 and 35, 
respectively, remains less than I0% for k < 0.3 as r/Xr 
increases from 0.1 to 1. 

To discuss the influence of the reduced surface 
roughness on the conductivity of polycrystalline films 

we need to deal with an approximate equation which 
makes additive the various contributions to the resis- 
tivity. Attempts to plot ln(c~f/Oo) against ln k and 
ln(cyf/%) against ln(r/Xc) yield straight lines with 
slopes respectively equal to about 1/3 (Fig. 7) and 

- 2/3 (inset to Fig. 7). 
Then, despite the opposite sign, we obtain similar 

values for the magnitudes of the slopes relating to 
corresponding linear plots (see insets to Figs 5 and 7, 
for example). This similarity is destroyed when we turn 
our attention to the dependence of the conductivity 
ratio on the grain parameter. By plotting ln(cf/%) 
against v, k and r/Xr acting as parameters, we find 
(Fig. 8) a more complex situation: all the points do not 
lie on a single straight line. In reality the conductivity 
date lie crudely on two interesting straight lines cor- 
responding to a large v (v > 2) and a small v (v < 1) 
region. The procedure yields a line of lower slope for 
the large v region than for the small v region. Then the 
function which approximates the exact variations in 
the conductivity with k, r/kr and v may be 

ln(cyf/c%) ~ �89 - 21n(r/Xr + ~lnv + (gr 

0~ ~ 1, k ~ 1 (36) 

in the limit of large v, whereas an estimate of or/Oo 
may be given by 

ln(cYr/%) ~ �89 - ~ln(r/k~) + 6 1 n v  + qfc, 

~ 1, k ~ 1 (37) 

in the small v region. 
To make the comparison between the exact and 

approximate values of or/Go more significant, values 
of the conductivity as evaluated from the exact Equa- 
tion 31 and from the respective Equations 36 and 37 
are listed in Tables IV and V. It can be seen that when 
the contribution of grain boundaries to the resistivity 
remains weak, the discrepancies between the exact 
and the approximate values do not exceed 8% for 
k ___ 0.03. But as soon as we are concerned with fine- 
grained films with rough surfaces, Table V reveals 
small deviations (typically less than 6%) between ex- 
act and approximate values in a relatively large range 
of k value (k < 0.1). Numerical values displayed in 
Table V show also that the k range of applicability of 
Equation 37 depends markedly on the value of the 
reduced roughness; the smoother are  the external 
surfaces, the smaller the k range of applicability of 
Equation 37 becomes. At this point it should be 
noticed that the first and second terms of the approx- 
imate Equations 36 and 37 resemble those previously 
proposed by Tellier [35] in the limit of large A to 
estimate the conductivity of metal films with rough 
surfaces in which the grain-boundary scattering is 
inoperative. Effectively Tellier showed that in the 
combined Soffer-Cottey model the approximate 
equation 

1 2 r in of ,~ - I n k -  - l n - -  
% 3 3 X c 

holds for large A. 

+ In n 2 In 4n 
31/2 3 

(38) 
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T A B L E  I H  The Hall coefficient ratio RHf/RHo in the limit of small magnetic fields, as evaluated from the exact Equation 32 and the 
approximate Equation 35. The value omitted from this table corresponds to a physically unreasonable value 

k v = 0 . 6  v = 2  v = 6  

Eq. 32 Eq. 35 Eq. 32 Eq. 35 Eq. 32 Eq. 35 

r/X~ = 0.1 

0.0001 6.076 6.087 7.663 7.576 8.604 9.252 
0.0003 4.281 4.220 5.372 5.253 6.020 6.415 
0.001 2.960 2.825 3.677 3.516 4.105 4.294 
0.003 2.162 1.959 2.644 2.438 2.935 2.977 
0.01 1.596 1.311 1.900 1.632 2.086 1.993 
0.03 1.281 - 1.469 1.131 1.587 1.382 

r / ~  = 1 

0.0001 27.706 28.253 35.149 35.167 39.551 42.942 
0.0003 19.233 19.590 24.390 24.384 27.441 29.775 
0.001 12.909 13'.114 16.356 16.323 18.395 19.932 
0.003 8.991 9.093 11.375 11.317 12.786 13.820 
0.01 6.076 6.087 7.663 7.576 8.604 9.252 
0.03 4.281 4.220 5.372 5.253 6.020 6.415 

i 0  -1 - 

d-  .i 

19 o.1-  
).01 , , ~  .1 

0.03 0.1 0.3 

I 1_2 10 .4 10 .3 16 
k 

Figure 7 Plots of In(of/O-o) against Ink, with v and r/~ c acting as 
parameters. Curves A, B, C, D are for v = 1 and  r/~,c = t; v = 1 and 
r/kc = 0.4; v = 4 and r/~, c = 1; v = 0.4 and r/~,c = 1, respectively. In 
the inset, a re  shown plots of ln(of/Oo) against ln(r/Xc) for k = 0.001. 
Curves A, B, C are for v = 10, 2, and 0.6, respectively. 

Finally we may observe that we can also optimize 
values for the constants cr a and c~ c. However, such 
research constitutes at this stage a speculative refine- 
ment because firstly the curves describing the exact 
and approximate variations in RHe/Rno with the film 
thickness cross each other, and secondly the main 
difficulties for the film conductivity arise when we try 
to track the influence of the grain parameter by means 
of a single equation. 

3.3. Conclusion 
Combining the Soffer-Cottey model and the three- 
dimensional model of grain boundaries, we have pre- 
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0.1 

0.01 

0.1 I 0 

Figure 8 Plots of ln(of/Oo) against In v. Curves a, b, c are for 
k = 0.0001 and for r/~r = 1, 0.4 and 0.1, respectively. Curves A and 
B are for k = 0.006 and r/Lo = 1 and 0.1, respectively. 

~ented results for the electrical conductivity, the Hall 
coefficient and the transverse magnetoresistance. The 
results differ from those derived in the framework of 
the classical Sonheimer model. The major fact is that 
even in the regime of small thickness and strong 
magnetic fields, all the galvanomagnetic parameters 
vary monotonically to reach limiting values with in- 
creasing [3. Clearly any oscillatory phenomenon in the 
galvanomagnetic parameter arises from increasing 
magnetic field. At this point it should be remarked 
that the classical Sondheimer theory was developed 
under the assumption of quasi-free electrons so that 
the Fermi surface is spherical. However, it is now well 
established [14] that the appearance of oscillations in 
the conductivity and in the Hall coefficient as the field 
is varied is connected to types of Fermi surface which 



TABLE IV The thickness variation of the conductivity ratio (Yf/(TY 0 a s  evaluated from the exact Equation 31 and the approximate Equation 
36: the limits of small magnetic fields and weak contributions to the resistivity by grain boundaries 

k v = 2  v = 4  v=10 

Eq. 31 Eq. 36 Eq. 31 Eq. 36 Eq. 31 Eq. 36 

r / ~  = 1 

0.0001 0.01048 0.01013 0.01241 0.01137 0.01409 0.01324 
0.0003 0.01511 0.01461 0.01789 0.01639 0.02031 0.01910 
0.001 0.02256 0.02182 0.02671 0.02449 0.03032 0.02853 
0.003 0.03249 0.03147 0.03848 0.03532 0.04368 0.041}5 
0.01 0.04839 0.04701 0.05732 0.05277 0.06508 0.06147 
0.03 0.06941 0.06780 0.08227 0~7610 0.09343 0.08866 

r/Xc = 0 . 1  

0.0001 0.04839 0.04701 0.05732 0.05277 0.06508 0.06147 
0.0003 0.06947 0.06780 0.08227 0.076101 0.09343 0.088657 
0.001 0.10251 0.10128 0A2164 0.11368 0.13825 0.13244 
0.003 0.14497 0.14607 0.17239 0.16395 0.19620 0.19101 
0.01 0.20821 0.21819 0.24862 0.24491 0.28372 0.28533 
0.03 0.28184 0.31469 0.33871 0.35323 0.38819 0.41151 

TABLE V The thickness variation of the conductivity ratio ~f/O" 0 a s  evaluated from the exact Equation 31 and the approximate Equation 
37: the limits of small magnetic fields and very fine-grained films 

k r/Xc = 1 r/kc = 0.1 

v = 0.6 v = 0.2 v = 0.6 v = 0.2 

Eq. 31 Eq. 37 Eq. 31 Eq. 37 Eq. 31 Eq. 37 Eq. 31 Eq. 37 

0.001 0.00651 0.00667 0.00357 0.00348 0.02997 0.03097 0.01636 0.01618 
0.003 0.00938 0.00962 0.00515 0.00503 0.04290 0.04466 0.02331 0.02333 
0.001 0.01400 0.01437 0.00767 0.00751 0.06303 0.06672 0.03392 0.03486 
0.003 0.02015 0.02073 0.01103 0.01083 0.08845 0.09622 0.04686 0.05027 
0.01 0.02997 0.03097 0.01636 0.01618 0:1251 0.14374 0.06441 0.07510 
0.03 0.04290 0.04466 0.02331 0.02333 0.1655 0.20731 0.08184 0.10831 
0.1 0.06304 0.06667 0.03392 0.03486 0.2114 0.30968 0.09858 0.16180 

ensure an extremal and singular value for the derivat- 
ive (~ d / ~  k~) where d is the area of the Fermi surface 
and k n  is the component of the wave vector k along H. 
These singularities arise when we are concerned with 
a truncated Fermi surface, an inflection point or an 
elliptic limiting point on the Fermi surface. Clearly 
spherical Fermi surfaces do not contain such singular- 
ities, and there is no reason to attribute the predicted 
oscillations to properties of localized regions Of the 
Fermi surface. This is the reason why the present 
calculations, which are of course for a free-electron 
metal, do not predict an oscillatory behaviour. More- 
over, in a recent study of the transverse magnetoresis- 
tance of thin potassium films, Gridin et al. [36] 
observed no oscillations in the transverse magnetores- 
istance as the field strength is increased. According to 
Sondheimer's prediction the potassium films are ex- 
pected to exhibit at least one, two and seven oscil- 
lations in the range of field strength investigated by 
these authors, and some attempts have been made 
without success to explain the absence of oscillations 
in terms of the usual arguments such as a large Hall 
field or the presence of open orbits due to preferred 
orientation. 

The experimental determination of parameters re- 
lated to the morphology and the geometrical surface 
states of thin films remains an open question. The 
possibility of fitting data implies at least a separation 
of the parameters related to the different scattering 
processes. For this reason approximate equations for 
the Hall coefficient ratio and the conductivity ratio are 
proposed in the low-field regime. These equations 
concern essentially thin films (k < 0.1) for which the 
problem of separating the different contributions to 
the Hall effect turns out to be more tractable. The 
proposed equations seem convenient to follow, for 
example, the changes in the surface roughness induced 
by successive thermal annealing, provided that the 
intermediate and final measurements of RHf and ~f 
were performed at relatively low temperatures. It 
should be noticed that annealing causes, at the lower 
annealing temperatures, a mechanical reordering of 
the top surface of the film [1, 18, 3%41] which is 
followed at higher annealing temperatures by an in- 
crease in the average grain diameter [1, 15, 24, 38, 39, 
42-44]. Care must then be taken in the interpretation 
of experiments. In particular, simultaneous measure- 
ments of the size effect on various parameters must be 
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made (here at least on of and Rnf (together with a 
systematic investigation of the changes in grain size 

�9 with annealing treatment. Since the transmission coef- 
ficient t certainly remains slightly affected by an- 
nealing, one can reasonably attribute changes in v to 
variations in D. Moreover, variations in Cro and X o on 
annealing may be also interpreted in terms of a reduc- 
tion of the concentration of other frozen-in structural 
defects such as point defects or lines of dislocations 
[15, 27, 44, 45]. Provided the annealing behaviour of 
the various defects are carefully examined, the pro- 
posed approximate equations appear to be convenient 
tools to estimate the variation in the surface roughness 
caused by the thermal ageing. 
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